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The Activated Random Walk (ARW) model is a promising candidate for
demonstrating self-organized criticality due to its potential for universality.
Recent studies have shown that the ARW model exhibits a well-defined critical
density in one dimension, supporting its universality. In this paper, we extend
these results by demonstrating that the ARW model on Z, with a single
initially active particle and all other particles sleeping, maintains the same
critical density. Our findings relax the previous assumption that required all
particles to be initially active. This provides further evidence of the ARW
model’s robustness and universality in depicting self-organized criticality.

1. Introduction. In 1987, Bak, Tang, and Wiesenfeld introduced the concept of self-
organized criticality (SOC) [1], a property observed in complex natural systems where energy
accumulates slowly and is released intermittently. SOC describes systems that naturally evolve
to a critical state without the need for fine-tuning parameters or external influences. Examples
include financial markets, where variations in stock and commodity prices follow a power-law
distribution, and forest fires, where accumulated flammable material can lead to large fires
ignited by small sparks. These examples highlight the ubiquity and significance of SOC in
various artificial and natural systems.

Since the concept of SOC was proposed, the search for a universal SOC model has led to
extensive research on the deterministic sandpile model. In this model, each vertex in a graph
has a nonnegative number of chips, and a vertex can topple when the number of chips at that
vertex equals or exceeds its degree. A toppling vertex distributes one chip to each neighboring
vertex, which can trigger a chain of topplings. This deterministic model exhibits intricate
fractals and patterns [7]. However, its deterministic nature limits its ability to exhibit certain
critical behaviors [3, 4, 6]. Ideally, a universal model should exhibit universality in the sense
that macroscopic properties are independent of microscopic details, making the system robust
to perturbations.

The probabilistic variant of the deterministic sandpile model is the stochastic sandpile
model. In this model, instead of sending one chip to each neighboring vertex when a site
topples, a fixed number of particles are sent to neighboring vertices chosen independently
according to some probability distribution. There is evidence that this stochastic model features
universality [2]. However, this model involves pairwise correlations in particle movements,
which complicates the analysis of its dynamics.

More recently, the Activated Random Walk (ARW) model has emerged as a promising
candidate for a universal SOC model. At each site, the initial number of particles is i.i.d. and
sampled from an ergodic distribution with mean ρ. In this continuous-time interacting particle
system on Z, each particle is either active or sleeping. Active particles perform symmetric
random walks at rate 1 and fall asleep at rate λ ∈ (0,∞). Sleeping particle remains stationary
until awakened by an active particle and is instantly reactivated if other particles are present at
the site. Since particles in the model perform random walks and fall asleep independently, the
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ARW model is more tractable than the stochastic sandpile model and has yielded significant
findings.

One of primary questions in ARW dynamics is whether the system fixates or remains
active, and under what conditions. Fixation occurs when every site is visited by active particles
only finitely often, while the system stays active if there is ongoing particle movement and
interaction. One might conjecture that the critical density, where a phase transition occurs,
depends on the specific version of the ARW model being considered.

Recently, the second author, Junge, and Johnson [5] proved that for each λ > 0, the critical
densities in the driven-dissipative model, the point-source model, the fixed-energy model on
Z, and the fixed-energy model on the cycle all exist and are equal, denoted by ρ∗. This result
confirms the density conjecture, reinforcing the ARW model as a promising candidate for
universality due to its well-defined critical density ρ∗.

Furthermore, the long-term behavior of a system depends on the particle density ρ and the
sleep rate λ. Specifically, Rolla, Sidoravicius, and Zindy demonstrated the following result,
which highlights a phase transition based on these parameters:

THEOREM 1.1 (Theorem 1 of [10]). Consider the ARW model on Zd for a fixed d≥ 1
with a given sleep rate λ. There exists a critical density ρ∗ such that for any spatially ergodic
distribution ν supported on configurations where all particles are initially active, the following
holds: a configuration sampled from ν almost surely fixates if the average density ρ is less
than ρ∗, and almost surely remains active if ρ is greater than ρ∗.

This theorem allows us to choose any shift-invariant ergodic measure for the initial config-
uration. However, there is an assumption that all particles should initially be active. In this
paper, we weaken this assumption to show that even with only one active particle, there is a
positive probability that the system remains active.

A very similar result was recently proved by Forien [8]. He studied activated random
walk on an interval where particles can leave through the endpoints. He showed that in the
supercritical regime, a positive density of particles leaves the interval with positive probability.
This paper significantly strengthens his result.

We consider a starting configuration ω ∈ {0, s}Z. In this configuration, ω(i) = 0 denotes
that site i is empty, and ω(i) = s indicates that site i contains a sleeping particle. The number
of particles at each site is an independent Bernoulli random variable with mean ρ ∈ (0,1),
referred to as the particle density.

Given a configuration ω ∈ {0, s}Z we define a new configuration ω∗ by setting ω∗(i) =
ω(i) for all i ̸= 0 and placing one active particle at the origin, that is, ω∗(0) = 1. For any
configuration ν ∈ {0, s,1,2, . . .}Z, let Pν represent the probability measure of the system’s
evolution starting from ν.

We are now in position to describe our main theorem. Let Fixation be the event that the
system eventually fixates. Our goal is to prove the following theorem:

THEOREM 1.2. Let ω ∈ {0, s}Z be a configuration with particle density ρ > ρ∗, where
all particles are initially asleep and the ω(i) are i.i.d. Bernoulli random variables with
expectation ρ. For almost every ω∗,

0< Pω∗(Fixation)< 1.

The property that Pω∗(Fixation)< 1 is often referred to as the system being explosive.
The lower bound is easy while the upper bound is significantly more involved.



SUPERCRITICAL ACTIVATED RANDOM WALKS ON IS EXPLOSIVE 3

PROOF OF LOWER BOUND. At the beginning of our process, there is only one active
particle at the origin. If this particle falls asleep before moving, then there are no active
particles available to awaken any remaining sleeping particles. As a result, the system achieves
Fixation immediately.

An active particle either jumps to a neighboring site at rate 1 or falls asleep at rate λ. The
total rate of these actions is 1 + λ. Therefore, the probability that the system fixates is at least
λ

1+λ .

Theorem 1.2 shows that the critical value is quite sharp. Below the critical value a con-
figuration least likely to fixate (one with all particles initially active) still fixates. Above the
critical value a configuration most likely to fixate (one with all but one particle initially asleep)
still has a positive probability of not fixating.

2. Site-wise Construction of ARW. In our proof of the upper bound, we utilize a site-
wise representation for the ARW, where infinite stacks of instructions are attached to each site.
This construction, underpinned by the abelian Property (Lemma 2.1), allows us to focus on
the moves taken by particles at specific sites without concerning ourselves with the order in
which they occur.

Consider the ordered set N∪ {s} with 0< s< 1< 2< · · · . A configuration is an element
ω ∈ {0, s,1,2,3, . . .}Z, where ω(x) gives the state of site x ∈ Z. If ω(x) = 0, there is no
particle at site x; if ω(x) = s, there is one sleeping particle; and if ω(x) = n≥ 1, there are n
active particles.

When an active particle visits a site with a sleeping particle, it wakes up the sleeping
particle, resulting in s+ 1 = 2. If a site is given a sleep instruction, the effect depends on
the number of active particles at the site. Precisely, if there is exactly one active particle at
the site, the particle becomes sleeping, so the state changes from 1 to s. If there are n≥ 2
active particles at the site, the sleep instruction has no effect, and the state remains at n. We
define a site x to be stable if ω(x)< 1 (i.e., if there are no active particles at x), and unstable
otherwise. By defining |s|= 1, we denote the number of particles at site x by |ω(x)|.

Each site x ∈ Z has an infinite stack of instructions Instrx(k), where k denotes the k-th
instruction at site x. The distribution of Instrx(k) is:

Instrx(k) =


Left with probability 1

2(1+λ) ,

Right with probability 1
2(1+λ) ,

Sleep with probability λ
1+λ .

Each Instrx(k) is independent for all x ∈ Z and k ∈ N+. And the rate at which we execute
unused instructions at each site x is given by 1ω(x)̸=s|ω(x)|(1 + λ). The Left (respectively,
Right) instruction subtracts 1 from ω(x) and adds 1 to ω(x− 1) (respectively, ω(x+ 1)).
Executing a Sleep instruction at a site with exactly one active particle changes ω(x) = 1 to
s; if there are multiple active particles at the site, the sleep instruction has no effect. We can
topple a single site x by executing its first unused instruction. Alternatively, we can topple a
sequence of sites α= (x1, x2, . . . , xl) by starting with x1 and proceeding to xl.

To track the number of topplings at each site, we introduce an odometer function U :

U : Z→N,
where U(x) denotes the number of times site x has been toppled. Additionally, Uα(x) repre-
sents the number of times site x appears in the sequence α. When toppling site x, we update
the configuration ω and the odometer reading U by defining the toppling operation acting on
(ω,u) as:

Φx(ω,U) = (Instrx(U(x) + 1)(ω),U + δx),
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where δx is a function on Z that takes the value 1 at x and 0 elsewhere. We say that Φx is
legal if site x is unstable. A toppling sequence Φα is a sequence of legal topplings if, for each
1≤ i≤ l, the toppling Φxi

is legal after performing the preceding topplings Φxi−1
· · ·Φx2

Φx1
.

We call α stabilizing if, after performing all topplings in the sequence α, no unstable sites
remain.

The abelian property is an essential feature of the ARW, enabling us to utilize the toppling
procedure described in Section 3, where we stabilize the system one interval at a time. We
formalize this property in the following lemma:

LEMMA 2.1 (Abelian Property [9]). Let α and β be two legal sequences of topplings of a
configuration ω. Suppose Uα(x) = Uβ(x) for all x ∈ Z. Then their final configurations are
identical, that is,

Φα(ω) = Φβ(ω).

We will also make use of a particle-wise representation of ARW. In this representation,
each particle has its own stack of i.i.d. instructions. The stacks for each particle are also
independent. By the abelian property, at any time we can choose to move any active particle.
We do this by executing the next unused instruction for that active particle. If this particle-wise
process terminates for a given initial configuration, then it will have the same final distribution
on the location of particles and odometers as the site-wise representation has.

3. Good Configurations.

3.1. Toppling Procedure. By the abelian property (Lemma 2.1), the stabilization of the
system is independent of the order in which sites are toppled. Therefore, we can perform the
following inductive partial stabilization procedure, starting from the configuration ω∗ with
one active particle at the origin:

1. Given ρ, choose δ < (ρ− ρ∗)/3 and a sufficiently large integer k > 200/δ2.
2. For each positive integer n, consider the interval In = [−kn, kn].
3. For each n, proceed inductively as follows:

a) Evolve the system within the interval In, freezing active particles at the boundaries of
In, until no active particles remain in the interior of In.

b) If active particles are present at the boundaries of In, extend the interval to In+1 and
repeat the process.

Throughout the remainder of this paper, when we refer to the odometer, we are considering
the odometer associated with the stabilization step on the interval In+1. Specifically, the
stabilization begins with the configuration ωinitial and concludes with the configuration ωfinal
on In+1. Also, the nth step stabilization refers to our toppling procedure for stabilizing
the interval In. Let Positive Odometer denote the subset of (−kn+1, kn+1) where the
odometer is positive during this stabilization step.

3.2. Good Configurations. Our goal is to show that, for a ‘typical’ configuration in our
stabilization process, the probability that the system stabilizes without active particles at the
boundaries of In+1 is very small, given that it satisfied the previous stabilization step within
the interval In. However, there exists a class of configurations in which no active particles
remain at the boundaries after stabilization. To address this, we introduce the concept of a
good configuration. Let γ < δ/10 be chosen such that both kγ and 1/γ are integers.

DEFINITION 3.1. A configuration ω is good for a positive integer n if ω satisfies the
following criteria for the nth stabilization step:
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Fig 1: Example of the configurations ωinitial (top) and ωfinal (bottom) during the stabilization of
the interval In+1 according to the toppling procedure. Red circles represent active particles,
while blue circles represent sleeping particles.

Criterion 1 The interval In contains at least 2kn(ρ∗ + 2δ) particles.

Criterion 2 Every subinterval of length γkn within In \ {−kn, kn} contains at most γkn(ρ∗+
δ) particles.

3.3. Prior Results. To estimate the probability that the system fails to satisfy the criteria
for a good configuration at step n+ 1, given that it satisfies the criteria at step n, we use the
following recent theorem.

THEOREM 3.2 (Theorem 8.4 of [5]). Let n be a positive integer. Consider activated
random walk on Z with sleep rate λ > 0. Let σ be an initial configuration with no sleeping
particles on the interval [a,a+ n− 1] for some integer a. Let Xn be the number of particles
left sleeping in the stabilization of σ on [a,a+ n− 1]. For any δ > 0,

Pσ[Xn ≥ (ρ∗ + δ)n]≤Ce−cn,

where C and c are positive constants depending only on λ and δ.

In particular, we will use the following variant of the theorem.

COROLLARY 3.3. Let n be a positive integer. Consider activated random walk on Z with
sleep rate λ > 0. Let σ be an initial configuration with at least one active particle on the
interval [a,a+ n− 1] for some integer a.

Let b be an integer and γ ∈ (0,1] such that Ib,γ = [b, b+nγ− 1]∩Z⊆ I . Let U be a stable
odometer on Ib,γ that satisfies U(b) = u0 and U(x)> 0 for every site x ∈ Ib,γ containing a
particle in σ. Define YIb,γ (u0) to be the number of sleeping particles remaining in Ib,γ after
applying U . Then, for any ρ > ρ∗(λ),

Pσ

[
YIb,γ (u0)≥ ρnγ

]
≤Ce−cn

for some constants C and c, depending only on λ and ρ.

PROOF. This is a restatement of equation (81) in the proof of Theorem 8.4 in [5] (plus an
application of the union bound).



6

3.4. Transition Probabilities. Let Gn denote the set of all good configurations on the
interval In at step n. We define the event

Dn+1 = the resulting configuration on In+1 is not good or the odometer is

somewhere equal to zero.

Our goal is to analyze the probability of the event Dn+1 conditioned on configurations
ω̃ ∈Gn. With a slight abuse of notation for ω̃ ∈Gn we write Pω̃ to indicate the randomness
of the distribution of particles in In+1 at the end of the stabilization of In+1. To achieve this,
we partition Dn+1 into four distinct cases, denoted D1

n+1, D2
n+1, D3

n+1, and D4
n+1, based on

the following considerations:

1. Odometer Considerations:
• Case D1

n+1: The sum of the odometers in In+1 exceeds k3.5(n+1).
• Case D2

n+1: The sum of the odometer does not exceed k3.5(n+1), and the odometer is
somewhere equal to zero.

2. Criterion Considerations: Identify which of the two criteria the configuration fails to
satisfy.
• Case D3

n+1: The sum of the odometer does not exceed k3.5(n+1), and the configuration
fails Criterion 1.

• Case D4
n+1: The sum of the odometer does not exceed k3.5(n+1), the odometer is

everywhere positive, and the configuration fails Criterion 2.

This decomposition allows us to systematically analyze and bound the probability of Dn+1

by considering each of these four cases separately.

LEMMA 3.4.

Dn+1 ⊂
4⋃

i=1

Di
n+1.

PROOF. Consider the case where the sum of the odometer readings in In+1 exceeds
k3.5(n+1). This scenario is captured by D1

n+1. Suppose, instead, that the sum does not exceed
k3.5(n+1). In this situation, either the odometer is zero at some location in In+1, leading to
D2

n+1, or the odometer is positive everywhere but the configuration is not good. In the latter
case, the configuration must fail either condition Criterion 1, which implies D3

n+1, or condition
Criterion 2, which implies D4

n+1.

LEMMA 3.5. For positive constants C and c depending on λ, we have

sup
ω̃∈Gn

Pω̃

(
D1

n+1

)
≤Ce−ck0.5(n+1)

.

PROOF. We use a particle-wise representation of ARW. There are at most 2kn+1 + 1≤
3kn+1 particles in In+1. If the sum of the odometers in In+1 exceeds k3.5(n+1), then there
must exist at least one particle that executes at least (1/3)k2.5(n+1) instructions (either steps
or sleep instructions).

Each time a particle takes k2n+2 steps, it has a probability of at least c′(λ)> 0 of exiting
In+1. Therefore, the probability that a particle takes more than k2.5(n+1) steps without reaching
the boundaries of In+1 decays exponentially in k0.5(n+1).

Applying the union bound over all particles in In+1, we obtain the desired result.
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LEMMA 3.6. There exist constants C and c such that

sup
ω̃∈Gn

Pω̃

(
D3

n+1

)
≤Ce−ckn+1

.

PROOF. Let X be the number of particles in In+1. Initially, each site contains one sleeping
particle, following a Bernoulli distribution with mean ρ. In our toppling procedure at step n+1,
we ensure that no particle escapes from In+1. Thus, the expectation of X is ρ(2kn+1 + 1).

We consider the event that X is less than 2kn+1(ρ∗ + 2δ). Since ρ > ρ∗ + 3δ, this value is
less than the expected value by a fixed proportion of δ. By the Chernoff bound, the probability
that X deviates below its mean by a fixed fraction decays exponentially in kn+1.

LEMMA 3.7. There exist positive constants C and c such that

sup
ω̃∈Gn

Pω̃

(
D4

n+1

)
≤Ce−ckn+1

.

PROOF. For D4
n+1 to occur, there must exist a subinterval of length γkn+1 with a particle

density exceeding ρ∗ + δ after the (n+ 1)th stabilization. There are at most 2kn+1 choices
of subinterval and k3.5(n+1) choices of odometer at the leftmost edge of the subinterval. By
Corollary 3.3, the probability of such an event for each of these choices decays exponentially
in kn+1. Applying the union bound over all possible subintervals and choices of the odometer
we obtain the desired result.

4. Completing the Proof. We will break up the event D2
n+1 into pieces depending on the

location of the leftmost and/or rightmost site with a zero odometer.

1. F 1
n+1: D2

n+1 occurs and there is no zero odometer ≥ kn,
2. F 2

n+1: D2
n+1 occurs and there is no zero odometer ≤−kn and

3. F 3
n+1: D2

n+1 occurs and there are zero odometers both ≤−kn and ≥ kn.

In the case that F 3
n+1 occurs we define z to be the smallest value with positive odometer and

z′ to be the largest value with positive odometer. Then we can partition

F 3
n+1 =

⋃
z′,z

F 3,z′,z
n+1 .

LEMMA 4.1.

D2
n+1 ⊂ F 1

n+1 ∪ F 2
n+1 ∪

⋃
z,z′

F 3,z,z′

n+1

 .

PROOF. If D2
n+1 occurs and F 1

n+1 and F 2
n+1 do not occur then F 3

n+1 must occur. Then
there are z and z′ such that F 3,z,z′

n+1 occurs.

To bound the probabilities of these events, recall that for a configuration ω, ω(i) represents
the number of particles at site i. Moreover, we define that if there is a sleeping particle at site
i, then ω(i) = 1. Using this description, our next definition will characterize the environment
in In+1 \ In before stabilizing.
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DEFINITION 4.2. We say that ωinitial ∈ {0,1,2, . . .}{−kn+1,...,kn+1} is plentiful if, for
every j ∈ {1,2, . . . , (k− 1)/γ}, the following inequalities hold:

kn+jγkn∑
i=kn+(j−1)γkn+1

ωinitial(i)≥ γkn(ρ∗ + 2δ)

and
kn+jγkn∑

i=kn+(j−1)γkn+1

ωinitial(−i)≥ γkn(ρ∗ + 2δ).

The next definition describes the configuration that we expect to see after stabilization in
the region Positive Odometer.

DEFINITION 4.3. We say that ωfinal ∈ {0,1,2, . . .}{−kn+1,...,kn+1} is sparse in R⊂ Z if,
for every integer j such that [j + 1, j + γkn]⊆R, the following inequality holds:

j+γkn∑
i=j+1

ωfinal(i)≤ γkn(ρ∗ + δ).

Next we bound the probabilities that the initial and final configurations are atypical.

LEMMA 4.4. There exist positive constants C and c such that

sup
ω̃∈Gn

Pω̃ (ωinitial is not plentiful)≤Ce−ckn

.

PROOF. In each interval, the total number of particles is the sum of γkn independent
Bernoulli random variables with mean ρ, where ρ > ρ∗ + 3δ. The probability that the total
number of particles in an interval is less than γkn(ρ∗ + 2δ) corresponds to a deviation below
the expected value by at least γkn(ρ− ρ∗ − 2δ)≥ γknδ. Applying the Chernoff bound, the
probability of such a deviation is exponentially small in kn. Since there are 2(k − 1)/γ
intervals, the union bound implies that the probability that ωinitial is not plentiful is
2(k− 1)/γ times an exponentially decreasing term.

LEMMA 4.5. There exist positive constants C and c such that

sup
ω̃∈Gn

Pω̃ (ωfinal is not sparse in Positive Odometer)≤Ce−ckn

.

PROOF. This follows by the same argument used in Lemma 3.7.

LEMMA 4.6. Let ωinitial, ωfinal ∈ {0,1,2, . . .}{−kn+1,...,kn+1} be the initial and final con-
figurations of the stabilization in In+1. If

1. there exist z ≤ kn such that z /∈ Positive Odometer,
2. ωinitial is plentiful and
3. ωfinal is sparse in [z, kn+1),

then

(1)
kn+1∑
i=z

i (ωfinal(i)− ωinitial(i))> (δ/10)(kn+1)2.
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PROOF. We will construct a pairing between the particles in ωinitial and ωfinal that satisfies

1. at least (δ/2)kn+1 particles in ωinitial are paired with a particle in ωfinal that is more than
(1/3)kn+1 to its right.

2. no particle in ωfinal is paired with a particle in ωinitial that is more than (3/δ)kn to its left,
3. at most (3/δ)kn particles in ωfinal is paired with a particle in ωinitial that is more than γkn

to its left,

These conditions imply that the sum on the left hand side of (1) is at least

(δ/2)kn+1(1/3)kn+1 − ((3/δ)kn)2 − (γkn)(2kn+1)≥ (k2n)(k2δ/6− 9/δ2 − 2γk)

≥ (k2n)(k2δ/10).

The last inequality holds for sufficiently large k. Thus (1) holds.
Since ωinitial is plentiful and ωfinal is sparse in [z, kn+1], in [−kn, kn + (2/δ)kn]

there are more particles in ωinitial than in ωfinal. Thus we can pair every particle in this region
in ωfinal to a particle in the same region in ωinitial. This interval has length at most (3/δ)kn and
it has at most (3/δ)kn particles in ωfinal.

In the region from

[kn + (2/δ)kn, kn+1/2]⊃ [kn+1/10, kn+1/2]

there are at least γkn+1/3 particles in ωinitial that are paired with a particle at kn+1. Thus we
can create the desired pairing.

LEMMA 4.7. Let Un+1(x) be the odometer at x in the stabilization at stage n+ 1. Let
Tilt be the event that

1.
∑kn+1

x=−kn+1 Un+1(x)≤ k3.5(n+1) and
2. there exists z ̸∈ Positive Odometer with

kn+1∑
j=z

j(ωfinal(j)− ωinitial(j))> (δ/10)k2n+2.

There exists C and c

sup
ω̃∈Gn

Pω̃(Tilt)≤Ce−ck.5n

PROOF. If z /∈ Positive Odometer then all of the particles that start to the right of z
remain to the right of z throughout the stabilization process. Choose an order of updating the
particles and call the configurations

ω0 = ωinitial, ω1, . . . , ωJ = ωfinal.

Then

X(j) =

kn+1∑
x=z

x(ωj(x)− ωj−1(x))

for j = 1,2, . . . , J is a martingale where the step size is bounded by 1. Also note that

J ≤
kn+1∑

x=−kn+1

Un+1(x)≤ k3.5(n+1).

By the Azuma-Hoeffding inequality we have that

P(Tilt)≤Ce−ck.5n

.
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LEMMA 4.8. There exists C and c such that

sup
ω̃∈Gn

Pω̃F
1
n+1 ≤Ce−ckn

and sup
ω̃∈Gn

Pω̃F
2
n+1 ≤Ce−ckn

.

PROOF. Suppose that F 1
n+1 occurs and ωinitial is plentiful. And let z be the largest site

with zero odometer. Then we have that z is less than kn.
For the first inequality by Lemma 4.6 these events only happen if ωinitial is not plentiful,

ωfinal is not sparse to the right of z′ or (1) holds (the center of mass changes a lot.) The
probabilities of these events are bounded by Lemmas 4.4, 4.5 and 4.7.

The second inequality follows by symmetry.

LEMMA 4.9. There exists C and c such that

sup
ω̃∈Gn

Pω̃

⋃
z,z′

F 3,z,z′

n+1

≤Ce−ckn+1

.

PROOF. First we deal with the case that the set of positive odometers is connected. As
ω̃ ∈Gn if ωinitial is plentiful then for every z < kn and z′ > kn there are at least

(z′ − z)(ρ∗ + 2δ)− 2γkn

particles in [z, z′]. If F 3,z,z′

n+1 occurs then all of these particles are in [z, z′] after stabilization. If
ωfinal is sparse in (z, z′) then there are at most

(z′ − z)(ρ∗ + δ) + 2γkn = (z′ − z)(ρ∗ + 2δ)− δ(z′ − z) + 2γkn

≤ (z′ − z)(ρ∗ + 2δ)− 2γkn − δ(2kn) + 4γkn

< (z′ − z)(ρ∗ + 2δ)− 2γkn

particles in [z, z′]. Thus F 3,z,z′

n+1 only happens if ωinitial is not plentiful or ωfinal is not sparse
in [z, z′].

If the set of positive odometers is not connected then the set Positive Odometer is of
the form [z, z1]∪ [z2, z

′] for some z1 and z2. A very similar computation to the one above again
shows that either ωinitial is not plentiful or ωfinal is not sparse in Positive Odometer.
Combining Lemmas 4.4 and 4.5 and summing up over all choices of z, z′, z1 and z2 completes
the proof.

LEMMA 4.10. There exist C and c such that

sup
ω̃∈Gn

Pω̃

(
D2

n+1

)
≤Ce−ckn0.5

.

PROOF. By Lemmas 4.1, 4.8, and 4.9 and the union bound.

LEMMA 4.11. There exist positive constants C and c such that

sup
ω̃∈Gn

Pω̃ (Dn+1)≤Ce−ckn0.5

.

PROOF. By Lemmas 3.5, 4.10, 3.6, and 3.7, the probabilities of the events D1
n+1, D2

n+1,
D3

n+1, and D4
n+1 decay exponentially in kn+1 or k0.5(n+1). Therefore, by Lemma 3.4 there

exist positive constants C and c such that

sup
ω̃∈Gn

Pω̃ (Dn+1)≤Ce−ckn0.5

.



SUPERCRITICAL ACTIVATED RANDOM WALKS ON IS EXPLOSIVE 11

PROOF OF UPPER BOUND OF THEOREM 1.2. From Lemma 4.11 and the Borel-Cantelli
lemma we get that the probability that Dn does not occur for any n is positive. By the
definition of Dn if Dn does not occur then every particle in In moves at least once in the nth
stabilization stage. Thus if Dn does not occur for any n then every particle moves infinitely
often. Thus the system does not stabilize.
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