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Abstract. We study the one-dimensional activated random walk (ARW) on

Z started with a point source of n particles at the origin. Let ρ∗ denote the
critical density. We prove that, uniformly throughout a linear-size bulk window

around the source, the probability that a site in the stabilized configuration

contains a sleeping particle converges to ρ∗ as n grows.

1. Introduction

Many complex systems share a common pattern: they accumulate stress or energy
gradually, then release it in sudden bursts. This pattern manifests in earthquake
dynamics, where stress accumulates progressively along geological fault lines before
dissipating abruptly through seismic events of varying magnitudes, from negligible
tremors to catastrophic ruptures. Similarly, financial systems display this behavior
through price fluctuations in stocks and commodities that conform to power-law
distributions. These and other observations point to a fundamental organizing prin-
ciple that Bak, Tang, and Wiesenfeld formalized in 1987 as self-organized criticality
(SOC) [1]. The defining characteristic of SOC is that systems autonomously migrate
toward critical states through their internal dynamics, requiring neither precise
parameter calibration nor external forcing. The prevalence of this mechanism across
both engineered and natural phenomena underscores its importance as a unifying
framework for understanding complex system behavior.

After SOC was introduced, researchers pursued a central question: which math-
ematical models could universally represent this critical behavior? Among the
candidates that emerged from this research program, the deterministic sandpile
model has received considerable attention. The model operates on a graph structure
where vertices accumulate nonnegative quantities of chips. When the chip count
at a vertex reaches or surpasses its degree, that vertex undergoes a toppling event,
transferring one chip to each adjacent vertex. These transfers can initiate cascading
sequences of topplings throughout the system. The resulting dynamics generate com-
plex fractal patterns [14], demonstrating the model’s capacity to produce nontrivial
emergent structures. Nevertheless, the strictly deterministic mechanics of the model
impose constraints that prevent the manifestation of certain critical phenomena
[6, 7, 10–12]. A genuinely universal model must demonstrate that its large-scale
properties remain invariant across different microscopic specifications, ensuring that
the system’s essential characteristics persist despite perturbations to its underlying
details.

To address these limitations, researchers developed the stochastic sandpile model,
a probabilistic variant of the deterministic framework. The fundamental distinc-
tion lies in the toppling mechanism. Rather than distributing exactly one chip to
every adjacent vertex during a toppling event, this stochastic variant disperses a
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predetermined quantity of particles among neighboring vertices selected randomly
according to a specified probability distribution. Recent investigations suggest that
this probabilistic approach successfully captures universality properties [2, 4, 5, 9],
marking a significant advancement toward a robust universal model. However, the
stochastic framework poses analytical challenges. Pairwise correlations emerge be-
tween particle trajectories, substantially increasing the complexity of characterizing
the system’s dynamics.

The Activated Random Walk (ARW) model represents a promising recent de-
velopment in the search for a universal SOC framework. The model establishes a
continuous-time interacting particle system on Z with an initialization procedure
that assigns particle counts to each site through independent and identically dis-
tributed sampling from an ergodic distribution characterized by mean density ρ∗.
The model distinguishes between two particle states: active and sleeping configu-
rations. Particles in the active state execute symmetric random walks with unit
rate while simultaneously transitioning to the sleeping state at rate λ ∈ (0,∞).
Conversely, sleeping particles maintain their positions without movement until
contact with an active particle triggers awakening, with the reactivation occurring
immediately when additional particles occupy the same location. The analytical
tractability of the ARW model stems from the independence structure governing
particle behavior, specifically the fact that individual particles conduct random walks
and enter dormant states through independent mechanisms. This independence
property distinguishes the ARW model from the stochastic sandpile framework
and has facilitated substantial progress in theoretical understanding, leading to
noteworthy analytical results.

A significant theoretical advance emerged from recent work by the first author
in collaboration with Junge and Johnson [8], establishing that critical densities
are not only well-defined but also identical across multiple ARW variants for any
λ > 0. The analysis encompassed four distinct formulations: the driven-dissipative
model, the point-source model, the fixed-energy model on Z, and the fixed-energy
model on the cycle. The demonstration that each of these frameworks possesses a
critical density and that these values coincide, denoted collectively as ρ∗, provides
rigorous validation of the density conjecture. This unification across different model
specifications strengthens the case for the ARW framework as a viable universal SOC
model, particularly because the existence of a well-characterized critical threshold
ρ∗ represents a hallmark of genuine criticality.

We consider point-source ARW on Z with n particles initially placed at the origin.
After stabilization, let

Si = {site i contains a sleeping particle}.

Our goal is to quantify the local density of sleepers in the bulk near the source. We
state our main theorem.

Theorem 1.1. Fix ε > 0. For the point-source ARW on Z with n particles at the
origin, and for any site

i ∈ [0,
1

2
(ρ∗ − ϵ)n] ∩ Z,

we have

P(Si) = ρ∗ + o(1) as n → ∞.
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We compare two point-source ARWs with sources at 0 and 1. We first run an
internal diffusion limited aggregation (IDLA) “flattening” phase. These moves are
legal for ARW, so exposing them first does not change the final ARW outcome.
Lemma 3.5 couples the two IDLAs so that, with high probability, the resulting
configurations agree. We then evolve both systems using the same randomness. On
the event that the flattened configurations match up to a shift, this coupling forces
the single-site sleeper probabilities at neighboring sites to be nearly equal, hence
the sleeper marginal is almost constant across short blocks in the bulk. Finally,
Lemma 4.1 identifies the average sleeper probability over such a short block with the
critical density ρ∗. Combining “near constancy on blocks” with the block-average
identification yields Theorem 1.1.

2. Site-wise Construction of ARW

To establish the upper bound we work with a site-wise (Diaconis–Fulton) con-
struction of the ARW: to every site we attach an infinite stack of instructions.
Thanks to the abelian Property (Lemma 2.1), the order in which sites are toppled
is irrelevant once the number of topplings at each site is fixed; this lets us reason
locally about moves at specified sites.

State space and configurations. Let N ∪ {s} be ordered by 0 < s < 1 < 2 < · · · .
A configuration is ω ∈ {0, s, 1, 2, . . . }Z, with ω(x) the state at x ∈ Z: ω(x) = 0
means no particle, ω(x) = s means one sleeping particle, and ω(x) = n ≥ 1 means
n active particles. When an active particle arrives at a site containing a sleeper, it
wakes it, so s+ 1 = 2. We set |s| = 1 and write |ω(x)| for the number of particles at
x. A site x is stable if ω(x) < 1 and unstable otherwise.

Instruction stacks and their execution. Each x ∈ Z carries an infinite stack
(Instrx(k))k∈N+ of i.i.d. instructions, independent across x and k, with

Instrx(k) =


Left with prob. 1

2(1+λ) ,

Right with prob. 1
2(1+λ) ,

Sleep with prob. λ
1+λ .

Unused instructions at x are executed at rate 1ω(x) ̸=s |ω(x)|(1 + λ). A Left (resp.
Right) instruction removes 1 from ω(x) and adds 1 to ω(x− 1) (resp. ω(x+ 1)). A
Sleep instruction at a site with exactly one active particle changes 1 7→ s, while it
has no effect if there are n ≥ 2 active particles.

Topplings and odometer. Toppling a site x means executing its first unused
instruction. For a finite sequence of sites α = (x1, . . . , xℓ) we topple in that order.
The odometer

U : Z → N, U(x) = (# of topplings at x),

records how many times each site has been toppled; for a sequence α we write Uα(x)
for the number of occurrences of x in α. If (ω,U) is the current state, the toppling
map at x is

Φx(ω,U) =
(
Instrx(U(x) + 1)(ω), U + δx

)
,

where δx is 1 at x and 0 elsewhere. The move Φx is legal when x is unstable. A
sequence Φα is a sequence of legal topplings if each Φxi is legal at the moment it is
performed; it is stabilizing if, after Φα, no site is unstable.
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The abelian property permits an interval-by-interval stabilization scheme. We
state it in the form we use:

Lemma 2.1 (Abelian Property [16]). Let α and β be legal toppling sequences for a
configuration ω. If Uα(x) = Uβ(x) for every x ∈ Z, then the resulting configurations
coincide:

Φα(ω) = Φβ(ω).

Particle-wise viewpoint. We also use an equivalent particle-wise construction:
each particle carries its own i.i.d. instruction stack, independent across particles. At
any time one may move any active particle by consuming its next unused instruction;
by the abelian property, the choice of which active particle to move is immaterial.
Whenever the particle-wise process terminates from a given initial configuration,
the joint law of the final particle locations and odometer agrees with that of the
site-wise construction.

3. Coupling two one-dimensional IDLA clusters

We begin with coupling statement for IDLA. Let C(s)
n be the IDLA cluster obtained

by releasing n particles from the site s ∈ {0, 1}. Let K
(s)
n denote the number of

occupied sites strictly to the right of s in C(s)
n after stabilization.

Observe that the two clusters C(0)
n and C(1)

n coincide after stabilizing n particles
if and only if

K(0)
n = K(1)

n + 1.

Thus it suffices to construct a coupling of (K
(0)
n ,K

(1)
n ) for which K

(0)
n = K

(1)
n + 1

holds with high probability.
Let Dn denote the number of descents of a uniformly random permutation σ ∈ Sn,

that is

Dn = #{1 ≤ i ≤ n− 1 : σ(i) > σ(i+ 1)}.
The next result Mittelstaedt identifies the law of K

(s)
n with the Eulerian distribution

of descents Dn of a uniformly random permutation.

Theorem 3.1 (Theorem 1 of [15]). For each source s ∈ {0, 1},

K(s)
n

d
= Dn, P[K(s)

n = k] =
⟨n, k⟩
n!

, 0 ≤ k ≤ n− 1,

where ⟨n, k⟩ is the kth Eulerian number.

Set

Pn(k) = P[Dn = k] and Qn(k) = Pn(k − 1) (k ∈ Z),
so Qn is the right shift of Pn. Note that

P(C(0)
n = C(1)

n ) = supP(X = Y )

where the supremum is over all couplings of X ∼ P and Y ∼ Qn. The maximal
value of P(X = Y ) is 1− TV(Pn, Qn), where

TV(Pn, Qn) =
1

2

∑
k∈Z

|Pn(k)−Qn(k)|

is total variation distance. Therefore we bound TV(Pn, Qn). We use standard fact
about Eulerian distribution. The Eulerian numbers are log-concave in k [17], hence
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the sequence Pn(k) is unimodal in k. From this, a short telescoping argument gives
an exact identity.

Lemma 3.2. If (P (k))k∈Z is unimodal and Q(k) = P (k − 1), then

TV(P,Q) = max
k

P (k).

Proof. Write ak = P (k)−Q(k). Since
∑

k ak = 0 and the sign of ak is nonnegative
up to the mode and negative thereafter,

TV(P,Q) =
1

2

∑
k

|ak| =
∑
k

(ak)+ = max
t

∑
k≤t

ak = max
t

P (t),

because
∑

k≤t ak = P (t) by telescoping. □

Applying Lemma 3.2 to Pn and Qn yields

TV(Pn, Qn) = max
k

Pn(k).

Thus the coupling problem reduces to bounding the maximal point mass of Dn.
Let Fn(x) = P(Dn ≤ x) and let Φn be the normal distribution with

µn =
n− 1

2
, σ2

n =
n+ 1

12
.

Theorem 3.3 (Theorem 1.1 of [18]).

∥Fn − Φn∥∞ := sup
x∈R

|Fn(x)− Φn(x)| ≤ C n−1/2.

Lemma 3.4.

max
k

Pn(k) ≤

(√
6

π
+ 2C

)
n−1/2.

Proof. Since Pn(k) = Fn(k)− Fn(k − 1), we obtain

Pn(k) ≤ (Φn(k)− Φn(k − 1)) + 2 ∥ FnΦn ∥∞≤ max
t∈R

(Φn(t)− Φn(t− 1)) +
2C√
n
.

And

max
t∈R

(Φn(t)− Φn(t− 1)) ≤ 1√
2πσn

=

√
6

π
· 1√

n+ 1
≤
√

6

π
· 1√

n
.

Therefore

max
k

Pn(k) ≤

(√
6

π
+ 2C

)
n−1/2.

□

Lemma 3.5. There exist c, γ > 0 and a coupling of two instances of IDLA on Z,
one with particles arriving at site 0, and the other with particles arriving at site 1,
such that for all n, the resulting stable configurations are identical with probability
at least 1− cn−γ .

Proof. Note that

P(C(0)
n = C(1)

n ) = supP(K(0)
n = 1 +K(1)

n ) = 1− TV(Pn, Qn).

By Lemma 3.2 and 3.4,

TV(Pn, Qn) = max
k

Pn(k) ≤ cn−1/2
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for some universal c, which proves the claim.
□

4. Block averages near the source

Lemma 4.1. For any ϵ, α > 0 and any i ∈ [0, (1− ϵ)n/2] ∩ Z,

(1)

i∑
j=i−⌊nα⌋

P(Sj) = (ρc + o(1))nα.

Proof. Let D be the number of particles that stabilize between i − ⌊nα⌋ and i,
inclusive of both endpoints. First note that by linearity of expectation the left hand
side of (1) is the expected value of D.

To bound E(D) we first perform IDLA freezing particles at i − ⌊nα⌋ − 1 and
i+ 1. Let A1 be the event that IDLA does not leave one active particle at every
site between i− ⌊nα⌋ and i. From Theorem 1 of [15] we can deduce that

(2) P(A1) < Ce−cn.5

.

Then we stabilize. We let a∗ be the number of particles that moved from i−⌊nα⌋−1
to i− ⌊nα⌋ and we let b∗ be the number of particles that moved from i to i+ 1.

Now we momentarily leave behind our stabilization and consider a new family of
starting configurations based on the IDLA process. For any a, b ≥ 0 we consider a
stabilization of a new configuration formed by adding some particles to the result of
the IDLA process. We add a particles at i− ⌊nα⌋ and b particles at i to the IDLA
configuration and stabilize with sinks at i − ⌊nα⌋ − 1 and i + 1. (Note that the
particles that were at i − ⌊nα⌋ and i + 1 after IDLA do nothing in this process.)
We can couple all of these new stabilizations with particles added and sinks with
the stabilization of our original activated random walk by using the same set of
instructions (after the IDLA has been performed) at every site.

For any a and b the distribution after this process is the stationary distribution
on the driven dissipative system by Theorem 2.1 of [13]. Fix any δ > 0. Let A2,a,b

be the event that the number of particles that stabilize between i− ⌊nα⌋ and i is
not in

((nα)ρc(1− δ/2), (nα)ρc(1 + δ/2)).

Let A3 be the event that

(1) AC
1 occurs

(2) (∪a,b∈[0,n5]A2,a,b)
C occurs and

(3) a∗ and b∗ are between 0 and n5.

Notice by the abelian property that D is the same as the number of particles left
between i− ⌊nα⌋ and i when we added a∗ particles to i− ⌊nα⌋ and b∗ particles to i
(with sinks at i− ⌊nα⌋ and i+ 1). So if A3 occurs we have

D ∈
(
(nα)ρc(1− δ/2), (nα)ρc(1 + δ/2)

)
.

By the same argument as Lemma 3.5 of [3] the probability that either a∗ or b∗ is
greater than n5 is exponentially small in n. By Propositions 8.5 and 8.6 of [8] for
any a and b

P(AC
2,a,b)
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is also exponentially small in nα. Thus combining (2) with the two bounds above
we have

P(A3) ≥ 1− Cn10e−cnβ

for some β, C and c.
Finally we note that 0 ≤ D ≤ n. Now we are ready to bound E(D).

E(D) ≥ P(AC
3 )(n

α)ρc(1− δ/2) ≥ (nα)ρc(1− δ).

The upper bound is

E(D) ≤ P(A3)(n
α)ρc(1 + δ/2) + P(AC

3 )n ≤ (nα)ρc(1 + δ).

Combining these two equations above we get that

E(D) = (nα)ρc(1 + o(1))

as desired. □

5. Completing the Proof

Proof of Theorem 1.1. Consider two instances of point-source ARW on Z, both with
n particles, one having source 0 and the other source 1. We may evolve the two
ARW instances by first performing IDLA until the stack is fully flat (no more than
one particle per site) – these topplings are always legal. We couple the dynamics in
this phase using the coupling given by Lemma 3.5. When the IDLA is complete,
if the configurations are not identical, we declare failure; otherwise, we couple by
performing exactly the same instructions for both systems. It follows, since both
systems have the same marginal distribution up to a shift by one, that

(3) |P(Sj)− P(Sj+1)| ≤ cn−γ .

By the triangle inequality, for j = 1, 2, . . ., and taking i as in the statement of
the Theorem,

(4) |P(Si)− P(Si−j)| ≤ (j)(cn−γ).

Summing over j ∈ [0, ⌊nα⌋] ∩ Z and using 4,

(5)

∣∣∣∣∣∣
i∑

j=i−⌊nα⌋

P(Sj)− ⌊nα⌋P(Si)

∣∣∣∣∣∣ ≤
⌊nα⌋∑
j=0

(j)(cn−γ) ≤ c′n2α−γ .

Combining with Lemma 4.1 (for any α < γ) and dividing by nα, we obtain

(6) |P(Si)− ρc| ≤ c′nα−γ = o(1).

□
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